Chapter 2

Isolation and Separation of Phenolics using HPLC Tool: A Consolidate Survey from the Plant System

Kumbhani Nancy R; Thaker Vrinda S*

Department of Biosciences, Saurashtra University, Rajkot-360 005, Gujarat, India.

*Correspondence to: Thaker Vrinda S, Department of Biosciences, Saurashtra University, Rajkot-360 005, Gujarat, India.

Email: thakervs@gmail.com

Abstract

HPLC is a versatile tool for separation of phenolics from the plant systems. Many studies are conducted for separation of phenolics using HPLC tool. This chapter summarized the work done in this area using various solvents, plant parts and assay condition in tabulated form.

1. General Introduction

In recent times, one of the key interests in food science and technology is the extraction, identification, and characterization of novel functional ingredients of natural origin. These ingredients are used as natural preservatives against food degradation, health promotion activities and value addition. Plants produce an amazing diversity of low molecular weight compounds. Although the structures of close to 50,000 have already been elucidated [1]. There are probably hundreds of thousands of such compounds. Only a few of these are part of 'primary' metabolic pathways (those common to all organisms). The rest are termed 'secondary' metabolites [2].

Amongst this diverse pool of metabolites, polyphenols are aromatic hydroxylated compounds, commonly found in vegetables, fruits and many food sources that form a significant portion of our diet, and which are among the most potent and therapeutically useful bioactive substances. The plant phenolics play important role in many physiological functions like, protein synthesis, nutrient uptake and oxidative enzyme (peroxidases) activities [3]. Photosynthesis and structural components. In addition, they also provide defense against microbial attacks and by making food unpalatable to herbivorous predators [4]. Thus, phenolics are overall important in many growth and development activities of the plants.

Besides the importance for the plant itself, such metabolites determine the nutritional quality of food, colour, taste, smell, antioxidative, anticarcinogenic, antihypertension, antiinflammatory, antimicrobial, immunostimulating, and cholesterol-lowering properties [5]. The health benefits of fruit and vegetables are mainly from the phytochemicals and a range of polyphenolics [6]. Significant antioxidant, antitumor, antiviral and antibiotic activities are frequently reported for plant phenols. They have often been identified as active principles of numerous folk herbals. In recent years, the regular intake of fruits and vegetables has been highly recommended, because the plant phenols and polyphenols they contain are thought to play important roles in long term health benefits and reduction in the risk of chronic and degenerative diseases.

2. Synthesis and Structure

Plant secondary metabolites have been fertile area of chemical investigation for many years, driving the development of both analytical chemistry and of new synthetic reactions and methodologies. The subject is multi-disciplinary with chemists, biochemists and plant scientists all contributing to our current understanding [7]. High concentrations of secondary metabolites might result in a more resistant plant. Their production is thought to be costly and reduces plant growth and reproduction [8]. Therefore, defense metabolites can be divided in to constitutive substances, also called prohibitins or phytoanticipins and induced metabolites formed in response to an infection involving de novo enzyme synthesis, known as phytoalexins [9]. Phytoanticipins are high energy and carbon consuming and exhibit fitness cost under natural conditions [10], but recognized as the first line of chemical defense that potential pathogens have to overcome. In contrast, phytoalexin production may take two or three days, as by definition first the enzyme system needs to be synthesized [11].

Chemical investigation of plant secondary metabolites remains a fertile area of research from multidisciplinary angles with chemists, biochemists and botanists. Isolation, identification biochemical pathways and contribution of these metabolites in the physiology of plants have enormously enriched the volume of data in last few decades. Based on their biosynthetic origins, plant secondary metabolites are divided into four major groups: (i) terpenoids (ii) N-containing alkaloids (iii) sulfur containing compounds and (iv) phenolics (**Table1**). Phenolics are reported as most widely studied compounds amongst them.

Plant phenolics are synthesized from carbohydrates via shikimate pathway. This is commonly present in plants and microbes as biosynthetic route to aromatic acids. Phenolics are characterized by having at least one aromatic ring with one or more hydroxyl groups attached. In excess of 8000 phenolic structures have been reported and they are widely dispersed throughout the plant kingdom [12]. Phenolics range from simple, low molecular-weight, single aromatic-ringed compounds to large and complex tannins and derived polyphenols. Based on arrangement of their carbon atoms and the number they are commonly found as conjugated to sugars and organic acids. In general, phenolics are distributed into two groups the flavonoids and the non-flavonoids.

2.1. Flavonoids

Flavonoids are polyphenolic compounds comprising fifteen carbons, with two aromatic rings connected by a three-carbon bridge. They are the most numerous of the phenolics and are found throughout the plant kingdom [13]. They are present in high concentrations in the epidermis of leaves and the skin of fruits and have important and varied roles as secondary metabolites. In plants, flavonoids are involved in such diverse processes as UV protection, pigmentation, stimulation of nitrogen-fixing nodules and disease resistance [14]. The main subclasses of flavonoids are the flavones, flavonols, flavan-3-ols, isoflavones, flavanones and anthocyanidins. Other flavonoid groups, which quantitatively are in comparison minor components of the diet, are dihydroflavonols, flavan-3,4-diols, coumarins, chalcones, dihydrochalcones and aurones.

2.1.1. Basic structure of flavonoid

(a) Flavones

(eg. Apigenin, Luteolin, Chrysin)

Position	5	7	3'	4'
Apigenin	ОН	ОН	-	ОН
Luteolin	ОН	ОН	ОН	ОН
Chrysin	ОН	ОН	-	-

(b) Flavonols

(eg. Quercetin, Kaempferol, Galangin)

			3' 6'	ı. 2.	
Position	5	7	3'	4'	5'
Quercetin	OH	ОН	ОН	ОН	-
Kaempferol	OH	ОН	-	ОН	-
Galangin	ОН	ОН	-	-	-

(c) Flavanone

(eg. Naringenin, Hesperetin)

Position	5	7	3'	4'
Naringenin	OH	OH	-	OH
Hesperetin	OH	OH	OH	OCH ₃

(d) Isoflavones

(eg. Ganistein, Daidzein)

(e) Flavan-3-ol

(eg. (+)- Catechin, (-)-Epicatechin, (-)-Epigallocatechin)

Position	3	5	7	3'	4'	5'
(+)-Catechin	βΟΗ	OH	OH	ОН	OH	-
(-)Epicatechin	α ΟΗ	ОН	ОН	ОН	ОН	-
(-)Epigallocat- echin	αOH	ОН	ОН	ОН	ОН	ОН

(f) Flavanol (eg.Taxifolin)

2.2 Non-flavonoids

The main non-flavonoids of dietary significance are the C6–C1 phenolic acids, most notably gallic acid, which is the precursor of hydrolysable tannins, the C6–C3 hydroxycinammates and their conjugated derivatives, and the polyphenolic C6–C2–C6 stilbenes [5].

2.2.1. Phenolic acids

Phenolic acids are also known as hydroxybenzoates, the principal component being gallic acid. The name derives from the French word galle, which means a swelling in the tissue of a plant after an attack by parasitic insects. The swelling is from a build up of carbohydrate and other nutrients that support the growth of the insect larvae. It has been reported that the phenolic composition of the gall consists of up to 70% gallic acid esters [15].

(a) Hydroxybenzoic Acids

Position	R1	R2	R3	R4
Benzoic acid	Н	Н	Н	Н
Gallic acid	Н	ОН	ОН	ОН
Vanillinic acid	Н	OCH ₃	ОН	Н
Salicylic acid	OH	Н	Н	Н

(b) Hydroxycinnamic Acids

Figure 2: Structures of the important naturally occurring phenolic acids (a) Hydroxybenzoic Acids (b) Hydroxycinnamic Acids

2.2.2. Stilbenes

Members of the stilbene family which have the C6–C2–C6 structure, like flavonoids, are polyphenolic compounds. Stilbenes are phytoalexins, compounds produced by plants in response to attack by fungal, bacterial and viral pathogens. Resveratrol is the most common stilbene [16].

The phenolics are present in all parts of the plant, however, quantity differ from one part to other and also with the age of the plant. Quantification data of the same species may also vary with ecophysiological conditions. Thus data on quantification of phenolics are often questioned [17] mainly due to diverse extraction and quantification procedure. Infect, determination of phenolics depends on analytic strategy of the selected sample the analytes and nature of the problem. In general, analysis of phenolics includes separation, identification and measurement using range of solvents and their combinations (**Table 2**). In majority of the methods separation is achieved by HPLC, although GC is used in some instances. HPLC is a versatile and widely used technique for the isolation of natural products. HPLC is a chromatographic technique that can separate a mixture of compounds and is used in phytochemical and analytical chemistry to identify, quantify and purify the individual components of the mixture mainly because it offers high performance over ambient pressure [18]. For phenolics, RP-HPLC (reverse phase) is most common mode of separation is explored with a C18 column and variable mobile phases (**Table 2**).

Currently, this technique is gaining popularity among various analytical techniques as the main choice for fingerprinting study for the quality control of herbal plants. The resolving power of HPLC is ideally suited to the rapid processing of such multi component samples on both an analytical and preparative scale [19]. HPLC is a dynamic adsoption process and is a separation technique conducted in the liquid phase in which a sample is separated into its constituent components by distributing between the mobile phase and stationary phase. HPLC utilizes a liquid mobile phase to separate the components of a mixture. The stationary phase can be a liquid or a solid phase. These components are first dissolved in a solvent, and then forced to flow through a chromatographic column under a high pressure [20].

Reverse-phase chromatography is the most commonly used separation technique in HPLC due to its broad application range. It is estimated that over 65% of all HPLC separations are carried out in the reversed phase mode. The reasons for this include the simplicity, versatility and scope of the reverse-phase method as it is able to handle compounds of a diverse polarity and molecular mass e.g. to identify secondary plant metabolites [21].

In addition, the term used for mobile phases in reversed phase chromatography is "buffer". However, there is little buffering capacity in the mobile phase solutions since they usually contain strong acids at low pH with large concentrations of organic solvents. Adequate buffering capacity should be maintained when working closer to physiological conditions [22].

In order to identify compound by HPLC a detector must first be selected. Once the detector is selected and is set to optimal detection settings, a separation assay must be developed. UV detectors are popular among all the detectors because they offer high sensitivity and also because majority of naturally occurring compounds encountered have some UV absorbance. Photodiode Array (PDA) and UV-VIS detectors at wavelengths 190-380 nm are normally used to identify the phenolics [21].

The high sensitivity of UV detection is bonus if a compound of interest is only present in small amounts within the sample. Besides UV, other detection methods are also being employed to detect phytochemical among which is the Diode Array Detector (DAD) coupled with Mass Spectrometer(MS) [23].

Liquid chromatography coupled with Mass Spectrometry (LC/MS) is also a powerful technique for the analysis of complex botanical extracts. It provides abundant information for structural elucidation of the compounds when tandem mass spectrometry (MS) is applied. Therefore, the combination of HPLC and MS provide better facilities for rapid and accurate identification of chemical compounds in medicinal herbs, especially when a pure standard is unavailable [24]. HPLC combined with diode array detector (HPLC/DAD), electrochemical detection (HPLC-ED), mass-spectrometer (HPLC/MS) have been successfully employed in qualitative and quantitative determination of various types phytoconstituents including alkaloids, flavonoids, tannins, glycosides, triterpenes, sterols etc [25]. The processing of a crude source material to provide a sample suitable for HPLC analysis as well as the choice of solvent for sample reconstitution can have a significant bearing on the overall success of natural

product isolation [26]. The source material, e.g., dried powdered plant, will initially need to be treated in such a way as to ensure that the compound of interest is efficiently liberated into solution. In the case of dried plant material, an organic solvent (e.g., methanol, chloroform) may be used as the initial extracting and following a period of maceration, solid material is then removed by decanting off the extract by filtration [23]. The filtrate is then concentrated and injected into HPLC for separation. The usage of guard columns is necessary in the analysis of crude extract. Many natural product materials contain significant level of strongly binding components, such as chlorophyll and other endogenous materials that may in the long term compromise the performance of analytical columns [22]. So, HPLC is a versatile, reproducible chromatographic technique for the estimation of secondary metabolites in the plants. It has wide applications in different fields in term of isolation, quantitative and qualitative estimation of active molecules. In Table-2 an overview of advanced extraction techniques to isolate and purify of plant based compounds, primarily by HPLC technique is summarized.

An antioxidant by definition is a substance that significantly delays or prevents oxidation of its oxidizable substrate when present at low concentrations compared to those of its substrate (Halliwell and Gutteridge 1989; Halliwell 1990). Packer et al. (1995) stated that many criteria must be considered when evaluating the antioxidant potential of a compound. Some of these concerning chemical and biochemical aspects are: specificity of free radical quenching, metal chelating activity, interaction with other antioxidants, and effects on gene expression [27].

Potential sources of antioxidant compounds have been searched in several types of plant materials such as vegetables, fruits, leaves, oilseeds, cereal crops, barks and roots, spices and herbs, and crude plant drugs. Free radical damages the structural and functional components of the cell such as lipid, protein, carbohydrates, DNA, and RNA. Banana peel contains high content of micronutrient compared to fruit pulp [28]. It attracts great attention because of their nutritional and antioxidant properties, especially the compounds, ascorbate, catechin, gallocatechin, and dopamine. Due to the importance of these compounds, it is necessary to understand its initial production and losses during fruit development, ripening, and maturation [29].

It is well established that phenolic compounds are commonly distributed in plant leaves, flowering tissues and woody parts such as stem and bark. The antioxidant potential of plant materials strongly correlates with their content of the phenolic compounds [30]. In plants, these antioxidant phenolics play a vital role for normal growth and protection against infection and injuries from internal and external sources [31,32].

Different parts of the same plant may synthesize and accumulate different compounds or different amounts of a particular compound due to their differential gene expression, which

8

in turn affects the antioxidant potential and other biological properties of the plant extracts produced [33,34]. Many studies have confirmed that the amounts and composition of phenolic and flavonoid compounds is diversified at the sub-cellular level and within plant tissues as well [35,36]. Plant phenolics, such as phenolic acids, stilbenes, tannins, lignans, and lignin, are especially common in leaves, flowering tissues, and woody parts such as stems and barks [37].

A universally define acceptable solvent, 80 % MeOH and 70 % EtOH are generally preferred solvents for phenolics extraction from plants [38]. The DPPH (2,2-Diphenyl-1-pic-rylhydrazyl radical) radical is widely utilized to evaluate the free radical scavenging capacity of antioxidants [39]. The DPPH is one of the few stable organic nitrogen radicals, and has a purple color. The radicals absorb at 517 nm. Antioxidant potential can be determined by monitoring the decrease in the absorbance. The result is reported as the amount of antioxidant utilized to decrease the initial DPPH concentration by 50%. The assay is simple and rapid; however, the interpretation is difficult when the test samples have maximum absorption in the range of UV-light that overlaps with DPPH at 517 nm [38].

The phenolic compounds known for its radical scavengers, therefore, it is worthwhile to determine the phenolic content in the plant chosen for the study [40]. Many available methods of quantification of total, mono and di phenolic content in food products or biological samples are based on the reaction of phenolic compounds with a colorimetric reagent, which allows measurement in the visible portion of the spectrum. The monohydroxy benzoic acids act as very weak antioxidants: owing to the electronegative potential of a single carboxyl group, only m-hydroxy bezoic acid has antioxidative potential. This activity increases considerably in the case of dihydroxy substituted benzoic acids, whose antioxidant response is dependent on the relative positions of the hydroxyl groups in the ring. Gallic acid (3,4,5-trihydroxy benzoic acid) is the most potent antioxidant of all hydroxybenzoic acids [41].

Due to the great variety and reactivity of phenolic compounds, the analysis is very challenging [42]. In the early days of high-performance liquid chromatography, it was stated that: "While LC gives accurate, specific results, it is slow relative to total phenol assay procedures, requires expensive equipments and specialized skills. Moreover, in many cases, the details provided by this method (i.e. relative concentrations of each isomer) are not needed". Even though some of those claims are basically still valid, the introduction of enhanced resolution and increased automation has resulted in HPLC (also known as high-pressure liquid chromatography) becoming the most popular analysis method for plant phenolics [43]

3. Conclusion

The most studied bioactivity of the phenols is their antioxidant status. The action of phenols as antioxidants is viewed in plants where phenols are oxidized in preference to other food constituents or cellular components and tissues. Thus, measurement of antioxidant potential of a phenol or mixture of phenols has been applied. The need for profiling and identifying individual phenolic compounds has seen traditional methods replaced by high-performance chromatographic analyses. The limited volatility of many phenols has restricted the application of GC to their separation. Merken and Beecher (2000) [44] have presented a comprehensive review on the analytical chemistry of food flavonoids in which they present detailed tabulations of columns and mobile phases used in HPLC. The most common mode of separation exploits reversed-phase systems typically with a C18 column and various mobile phases.

Type of secondary metabolite	Approximate numbers
Nitrogen-containing Secondary metabolites	
Alkaloids	21000
Amines	100
Non-protein amino acids (NPAAS)	700
Cyanogenic glycoside	60
Glucosinolates	100
Alkamides	150
Lectins, peptides, polypeptide	2000
Secondary metabolites without nitrogen	
Monoterpenes including iridoids	2500
Sesquiterpenes	5000
Diterpenes	2500
Triterpenes, steroids, saponins	5000
Tetraterpenes	500
Flavonoids, tannins	5000
Phenylpropanoids, lignin, coumarins, lignans	2000
Polyacetylenes, fatty acid, waxes	1500
Anthraquinones and othes polyketides	750
Carbohydrates, organic acids	200

 Table 1: Number of Secondary Metabolites reported from higher plant (Satyawati and Gupta 1987)

Table 2: Review on various parameters of phenolic compounds investigated in plants using HPLC analysis	ysis.1
--	--------

Sr No.	Plant name	Plant family	Plant part		HPLC	System		Use of the compound
				Column	Mobile phase	Compound o	extracted	
						Phenols	Flavanoids	
1	Alpinia officinarum	Zingiberaceae [46]	air dried leaves powder	A separon SIX C18 (5mm) RP-cartridge 15cm ´3 mm I.D.	methanol- 5mM diammonium hydrogenphosphate pH 7.3 (65:35)	Vinblastin		use in neoplastic diseases
2	Betula pubescens	Betulaceae; [47]	leaves	Spherisorb ODS-2 Col.(250×4.6mm i.d.5µm)	A.5% aq.Formic acid B.Acetonitrile	2 acylated compounds (1 st time) 1. myricetin-3- O-α-L-(acetyl)- rhamnopyranoside 2. quecetin-3-O- L-(4-O-acetyl)- rhamnopyranoside Chlorogenic acid	Myricetin glycosides Quecetin Glycosides Kaempferol glycosides	Antioxidant activity
3	Camellia sinensis L.	Theaceae [48]	dry leaves	2 type column 1. Nova Pak C18- 4mm column (3.9mm'15 cm) from waters (miliford MA)	Acetonitrile, ethyl acetate, methanol in combination	Catechins, caffeine		antioxidant, anti-mutagenic, anti- carcinogenic, hypochol- esterolemic activity
				2.Ultrapac Spherisorb ODS 2-3 mm column (4.6mm'10 cm) from LKB (Bromma, Sweden) UV detector	with 0.1% orthophossphoric acid 8.5:2:89.5,v/v/v phase			
4	Melissa officinalis L.	Lamiaceae [49]	dried leaves	Lichrocart 125-4 superspher RP 8-E, 4mm (Merck)	A.H ₂ O-H ₃ PO ₄ 85% (100:0.3)	Luteolin derivatives		
					B.MeCN-H2O- H3PO4 85% (80:20:0.3)	Rosmarinic acid		and functoinal gastrointestinal disorders
5	solanum nigrum	Solanaceae [50]	root,stem, leaves	ODS-col. 25'0.26 cm	1.CAN 2. 0.01M tris	solasonine, solamargine, solanine (glycoalkaloids)		pharmaceutical industry
6	Schisandra chinensis Baill.	Schisandraceae [51]	seeds	separon SGX C18 5mm (150 ′ 3 mm I.D)	methanol- deionised water (75:25)	lignin separation Gomisin A, Gomisin B		prevent liver injuries, lipid peroxidation
		Mangnoliaceae						stimulate liver regeneration
								inhibit hepato- carcinogenesis
7	Lactuca sativa L.	Asteraceae [52]	leaves	150'3 mm(5 mm) Luna C18 col. With 4 mm ' 3 mm I.D. C18 ODS precol.	4 step linear gradient system used starting from 93% water (pH 3.2 by H ₃ PO ₄) upto 75% CH ₃ CN	caffeic acid, chlorogenic acid isochlorogenic acid polyphenols		treatment of rhinitis, asthma, cough and pertussis
8	Beet roots	Amaranthaceae [53]	roots	1. a Li- chrospher 100RP-18 125 ' 4 mm, 5mm with guard col. 4' 4mm, 5mm 2. a zorbax SB C8 150' 4.6 mm, 5 mm guard col.12.5 '4.6 mm, 5mm	binary gradient mixture of 2. 30mM potassium phosphate buffer at pH 2.3 and acetonitrile	Folates (naturally occuring vitamin B)		health protecting roles

9	<i>Hamamelis virginiana L</i> Witch hazel.	Hamamelidaceae [54]	dry twing, bark, leaves	A kingsorb 5mm C18 (150 ′ 4.6mm)	A.0.1% (v/v) orthophosphoric acid in water B. 0.1% (v/v) orthophosphoric acid in methanol	Hamamelitanin catechins gallic acid		used as components of skincare products. in dermatological treatment of sunburn, irritated skin, atopic eczema. to promote wound healing via anti- inflammtory effects
10	Centaurium erythraea	Gentianaceae [55]	Micropropagate plant	hypersil ODS col. (250 ′ 4 mm 5mm hewlett packard	1.ACN 2.3% v/v acetic acid	secoiridoid glucosides gentiopioside, sweroside, swertiamarine		fungitoxic, antibacterial, choleretic, pancreatic, hepato- protective
11	Alpinia officinarum Hance(AO)	Zingiberaceae [56]		RP-col.(ZOR BAX, Eclipse SB- C18 5mm, 4.6 ' 250 mm) C18 guard col.	methanol-water- phosphoric acid(60-38-2,v/v/v isocratically		Flavonoid Galangin 3-O-methayl galanin	anticlastogenic, anti-mutagenic, anti-oxidative, radical scavenging hypolipidemic agent due to its inhibition of pancreatic lipase
12	Piper regnellii (Miq.) C.DC. Var	Piperaceae [57]	dried root stem leaves	Metasil ODS col. 5mm 150mm '4.6 mm	mixture of acetonitrile- water(60:40 v/v)	conocarpan (neolignan)		use for treatment of wounds, swellings, skin irritations
	Pallescens (C.DC.) Yunck				containing 2% acetic acid	eupomatenoid-5 eupomatenoid-6		
13	Platycladus orientalis L.	Cupressaceae [58]	leaves	Agilent Eclipse XDB-C18 Col. (3.5mm,12.5mm'4.6 mm I.D.)	methanol and CAN		flavanoids	antioxidant, antiallergic diuretic properties
	Franco						Quercitrin amentoflavone	use for treatment of gout, rheumatism, diarrhea
14	Paeonia lactiflora oriental medicinal plant	Paeoniaceae [59]	dry plant	Inertsil ODS-3 C18 (250 ×6mm) 5mm I.D C18 guard col.	acetonitrile- water (gradient HPLC method	Paeoniflorin, albiflorin		cleansing heat, cooling blood, invigoraing blood circulation
15	Prunus x domestica L.	Rosaceae [60]	fruit, leaf, leaf petiole	SGE Walkosil 11 5C18 RS column (150 ´ 4.6 i.d.5mm particles	50 mM NaC ₁₄ in 0.1% H ₃ Po ₄	Ghrelin hormone		promotes food intake, weight gain and adiposity in rodents
	Marus alba	Moraceae		120 A Pore size		(in Parenchyma cells)		
16	Vitex-agnus- castus	Verbenaceae [61]	dry leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	Caffeic acid		Antioxidant activity
					B. water with 6% glacial acetic acid	Ferulic acid		
					C. water acetonitril(65:30 v/v) with 5% glacial acetic acid	Rutin, p-Coumaric acid		
17	Origanum dictamnus	Lamiaceae [61]	dry leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	Catechin		Antioxidant activity
					B. water with 6% glacial acetic acid			
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid			

18	Teucrium polium	Lamiaceae [61]	dry leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	Tyrosol		Antioxidant activity
					B. water with 6% glacial acetic acid	Caffeic acid		
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	Ferulic acid, luteolin		
19	Lavandula vera	Lamiaceae [61]	dry leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	p-hydroxybenzoic acid		Antioxidant activity
					B. water with 6% glacial acetic acid	Catechin		
					C. water acetonitril(65:30 v/v) with 5% glacial acetic acid	Vanillic acid Caffeic acid, Ferulic acid, Naringenin		
20	Lippia triphylla	Verbenaceae [61]	dry leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	Hydroxytyrosol		Antioxidant activity
					B. water with 6% glacial acetic acid	Caffeic acid		
					C. water acetonitril (5:30 v/v)with 5% glacial acetic acid	Ferulic acid, Apigenin		
	Greek aromatic olive plants							
21	Capparis spinosa	Capparaceae [61]	leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	Hydroxytyrosol	Quercetin	significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	Caffeic acid	Rutin	
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	p-Coumaric acid, Vanillic acid, Ferulic acid, Gallic acid		
22	Castanea vulgaris	Cupuliferae [61]	leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	gallic acid	quercetin	significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	ferulic acid	rutin	
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid		naringenin	
23	Geranium purpureum	Geraniaceae [61]	leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	gallic acid	quercetin	significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	gentisic acid	rutin	
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	caffeic acid, p-Coumaric acid, vanillic acid, syringic acid, p-hydroxybenzoic acid		
24	Nepeta cataria	Labiateae [61]	herb	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	gallic acid	luteolin	significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	caffeic acid	eriodictyol	
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	ferulic acid		
25	Origanum dictamnus	Labiateae [61]	leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	gallic acid	quercetin	significance for human diet and antimicrobial activity

					B. water with 6% glacial acetic acid	caffeic acid		
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	p-Coumaric acid, p-hydroxybenzoic acid		
26	Spartium junceum	Leguminosae [61]	flower	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	gentisic acid	luteolin	significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	caffeic acid	quercetin	
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	p-Coumaric acid, vanillic acid		
27	Jasminum officinalis	Oleaceae [61]	flower	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	gallic acid	quercetin	significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	p-Coumaric acid		
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid			
28	Phytolacca americana	Phytolaccaceae [61]	leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	caffeic acid	rutin	significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	p-Coumaric acid		
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	vanillic acid, p-hydroxybenzoic acid, ferulic acid		
29	Ruta graveolens	Rutaceae [61]	leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid B. water with 6% glacial acetic acid	ferulic acid, p-hydroxybenzoic acid, gentisic acid, caffeic acid	Quercetin, rutin	significance for human diet and antimicrobial activity
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid			
30	Styrax officinalis	Styracaceae [61]	leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	gallic acid	quercetin	significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	gentisic acid	naringenin	
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	caffeic acid, p-Coumaric acid, vanillic acid, p-hydroxybenzoic acid, ferulic acid		
31	Cuminum cymium	Umbelliferae [61]	seeds	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	gallic acid	rutin	significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	caffeic acid	quercetin	
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	ferulic acid	naringenin	
32	Foeniculum vulgare	Umbelliferae [61]	herb	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	gallic acid	rutin	significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	caffeic acid	quercetin	
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	ferulic acid		

33	Himulus hipulus	Urticaceae [61]	leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	gallic acid	eriodictyol	significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	p-Coumaric acid	quercetin	
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	p-hydroxybenzoic acid		
34	Urtica dioica	Urticaceae [61]	leaves	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid	gallic acid		significance for human diet and antimicrobial activity
					B. water with 6% glacial acetic acid	syringic acid		
					C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	ferulic acid		
35	Canarium album L.	Burseraceae [62]	fruit	RP- C18(250mm'4mm)	A.0.5% (v/v) acetic acid	Gallic acid	1st reported	used for the treatment of faucitis, stomatitis, hepatitis, toxicosis
	chinese olive fruit		budding to flower stage		A. methanol	methyl gallate, ethay gallate, ellagic acid, brevifolin carboxylic acid, sinapic acid, hyperin		
					B. water with 0.2% sulphuric acid	rosmarinic acid, vanillic acid, chlorogenic acid, gallic acid, cinnamic acid	Luteolin, coumarin, rutin	strong antioxidant activity, oil as antimicrobial agent
36	Tobacco	Solanaceae [63]	dried leaves	Hypersil C4 (4.6mm ' 150 mm,5mm	acetonitrile and water	solenosol		cardiac stimulant lipid antioxidant antibiotic
37	Echinacea pallida (Nutt)	Asteraceae [64]	dry root/capsules	1.as above 2. chromolith performance RP-C18 (100mm'4.6mm guard col. RP-C18 (5mm'4.6mm)	1.water 2.ACN	Polyacetylenes polyenes		antifungal, antibacterial compound inhibitor of no. of enzymes eg. Cholesterol, acytransferase
38	Borago officinalis L.	Boraginaceae [65]	leaves	TOSO HAAS Semi- micro ODS-80 TS col. (5mm,2mm' 25 cm)	A. 2% acetic acid B. acetonitrile	rosmarinic acid		antioxidant and antiradical activity
39	Alpinia zerumbet	Zingiberaceae [66]	leaves, roots	RP-18 ZORBAX ODS col. 25 ' 0.46 cm 5mm particle size	A.1% v/v acetic acid B. methanol/ acetonitrile/ acetic acid (95:4:1 v/v/v)	from leaves oil 1,8 cineol, methyl cinnamate	Rhizomes DDK, methyl cinnamate, dihydro- 5,6-dehydrokawain	insecticidal antifungal activity
40	Alpinia zerumbet	Zingiberaceae [66]	flower, seeds	RP-18 ZORBAX ODS col. 25 ′ 0.46 cm		Flower	seeds	antioxidant activity
				5mm particle size	A.1% v/v acetic acid B. methanol/ acetonitrile/ acetic acid (95:4:1 v/v/v)	syringic acid, p-hydroxybenzoic acid, ferulic acid	p-hydroxybenzoic acid, vanillic acid, syringic acid	used for the treatment of cardiovascular hypertensions, antipasmodic agent
41	Anisophyllea dichostyla R.Br.	Rhizophoraceae [67]		C18-RP col. (250'4mm 5mm)	1.2% acetic acid 2.methanol	catechins ellagic acid derivatives epicatechin		medication against anorexia, fatigue and intestinal infection

42	Hippophae rhamnoids	Elaeagnanceae [68]	SB berriers, leaves	phenomenex c18,ODS-2,5mm, 250mm'4.6mm	A.2% acetic acid B.metanol	protocatechuic acid, p-hydroxybenzoic acid, cinnamic acid, vanillic acid, gallic acid,		antitumor, antiviral, antioxidant properties, medicinal and cosmetic applications
	Sea Buckthorn					caffeic acid, p-Coumaric acid, ferulic acid, salicyclic acid		
43	Vitis vinifera L. (white)	Vitaceae [69]	Grapes	C18 kromasil 300mm′4.6mm 5mm particle size	A.acetonitrile/ acetic acid/ water(35:2:63) B. 2% acetic acid	5 DHF (dihydroflavonols) 7Q (quercetin derivatives), 4 Kaempferol derivatives		produce high quality wine
44	Cymbopogon citrates lemon grass	Gramineae [70]	leaves	Spherisorb.85 ODS-2 column (250 '4.6mm I.D 5mm) guard column C18 (30 ' 4 mm I.D 5mm)	A. 5% aqueous formic acid v/v B. methanol	O and C glycosyl flavones Apigenin, loteolin		anti inflammatory, diuretic activities Hypotensive, vasorelaxating
45	Rosmarinus officinalis	Labiatae [71]	Oil	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid B. water with 6% glacial acetic acid C. water acetonitril(65:30 v/v)with 5% glacial acetic acid	syringic acid ferulic acid		multiple biological effect such as antioxidant activity antimicrobial activity prevention of human pathologies
46	Origanum dictamnus	Labiatae [71]	oil	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid B. water with 6% glacial acetic acid C. water acetonitril(65:30 v/v)with 5% glacial acetic acid	caffeic acid	Naringenin, eriodictyol	multiple biological effect such as antioxidant activity antimicrobial activity prevention of human pathologies
47	Origanum majorana	Labiatae [71]	oil	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid B. water with 6% glacial acetic acid C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	high ferulic acid	Catechin, rutin, quercetin	multiple biological effect such as antioxidant activity antimicrobial activity prevention of human pathologies
48	vitex-agnus- cactus	Verbenaceae [71]	oil	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid B. water with 6% glacial acetic acid C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	P-hydroxybenzoic acid		multiple biological effect such as antioxidant activity prevention of human pathologies
49	styrax officinalis	Styracaceae [71]	oil	5mm ODS 2.4'250 mm at ambient temp.	A. water with 1% glacial acetic acid B. water with 6% glacial acetic acid C. water acetonitril (65:30 v/v) with 5% glacial acetic acid	vanillic acid		multiple biological effect such as antioxidant activity antimicrobial activity prevention of human pathologies

50	Ephedra sinica stapfs	Ephedraceae [72]		HS F5 col. (150mm ′ 4.6 mm I.D.5mm	Isocratic ammonium acetate (7mM) in acetonitrile-water (90:10v/v)	ephedrin alkaloids		for treatment of asthma, bronchial spams, as a stimulant and diaphoretic
	Ephedra vulgaris Rich.				ammonium acetate (7mM) in acetonitrile-water (90:10v/v)	Synephrine Norephedrine Norpseudoephedrine Ephedrine		Used as a as a stimulant and diaphoretics
51	Eucommia ulmodies Oliver.	Eucommiaceae [73]	dried leaves	C18 col.(150mm ' 4.6 mm I.D.5mm)	 methanol 0.5% acetic acid 	chlorogenic acid		antibacterial, antimutagenic, antioxidant, quality control
52	Eugenia jambolana Lam.	Myrtaceae [74]	bark	ODS RP C18 col.(250 ´4.6 mm, 5mm	1. 3% trifluoroacetic acid 2. acetonitrile- methanol (80:20 v/v)		Quercetin Kampeferol total flavonols	antioxidant, antiallergic, anti- artherogenic, anti- inflammatory, antimicrobial antihrombotic, cardio- protective, vasodilatory effect
53	Acacia nilotica	Fabaceae [74]	bark	ODS RP C18 col.(250 '4.6 mm, 5mm	 3% trifluoroacetic acid acetonitrile- methanol (80:20 v/v) 		Myricetin Quercetin Kampeferol total flavonols	antimicrobial antihrombotic, cardio- protective, vasodilatory effect
54	Azadirachta indica	Meliaceae [74]	bark	ODS RP C18 col.(250 '4.6 mm, 5mm	1. 3% trifluoroacetic acid 2. acetonitrile- methanol(80:20 v/v)		Quercetin Kampeferol total flavonols	antimicrobial antihrombotic, cardio- protective, vasodilatory effect
55	Terminalia arjuna	Combretaceae [74]	bark	ODS RP C18 col.(250 '4.6 mm, 5mm	1. 3% trifluoroacetic acid 2. acetonitrile- methanol (80:20 v/v)		Quercetin total flavonols kampeferol	antimicrobial antihrombotic, cardio- protective, vasodilatory effect
56	Moringa oleifera	Moringaceae [74]	leaves, roots	ODS RP C18 col.(250 '4.6 mm, 5mm	 3% trifluoroacetic acid acetonitrile- methanol (80:20 v/v) 		Leaves Myricetin Quercetin Kampeferol total flavonols	antimicrobial antihrombotic, cardio- protective, vasodilatory effect
							Roots Myricetin Kampeferol total flavonols	antimicrobial antihrombotic, cardio- protective, vasodilatory effect
57	Ficus religiosa	Moraceae [74]	fruit	ODS RP C18 col.(250 '4.6 mm, 5mm	 3% trifluoroacetic acid acetonitrile- methanol (80:20 v/v) 		Myricetin Kampeferol Quercetin total flavonols	antimicrobial antihrombotic, cardio- protective, vasodilatory effect
58	Aloe barbadensis	Asphodelaceae [74]	leaves	ODS RP C18 col.(250 '4.6 mm, 5mm	1. 3% trifluoroacetic acid 2. acetonitrile- methanol (80:20 v/v)		Myricetin Kampeferol Quercetin total flavonols	antimicrobial antihrombotic, cardio- protective, vasodilatory effect

59	Pinguicula lusitanica L. Pale butter wort carnivorous perennial plant	Lentibulariaceae [75]	invitro plantlets used	An alltima HP 3mm (150 ′ 4.6 mm I.D.)	A. 0.1% v/v formic acid B. acetonitrile	iridoid glucosides, Caffeoyl Phenylethanoid Glycosides a. globularin b. verbascoside		imp role in defense mechanism against herbivores. resistance to or protection from fungal and viral attacks
60	Viburnum prunifolium	Caprifoliaceae [76]		A Pinnacle ODS amine C18 (250mm'4.6mm, 5mm protected by	As above	iridoidic component		
	Black Haw			ODS amine C18 guard col. (10mm '4 mm,5mm)		iridoid glucosides		
61	Glycine max L.	Fabaceae [77]	seed	RP-C18 col. (125mm ´4mm, Lichro) (ART,5mm Merck K GaA)	1. 0.1% acetic acid in water	9 type anthocyanin		Detoxification
						1. catechin-cyanidin-3- O-glucoside		
						2. delphinidin-3-O- galactoside		
	black soyabean				2. 0.1 % acetic acid	3. delphinidin-3-O- glucoside		anti
					III CAN	4. cyanidin-3-O- Galactoside		minaminatory
						5. cyanidin-3-O- glucoside		
						6. petunidin-3-O- Glucoside		
						7. pelargonidin-3-O- glucoside		to improve
						8. peonidin-3-O- glucoside		blood process
						9.cyanidin		
62	Cannabis sativa L.	Cannabinaceae [78]		waters Xterra MS C18 analytical col. (5mm,250mm ' 2.1mm)	mixture of methanol/ water containing 50mM of	Cannabinoids, D9 Tetrahydrocannabinol (THC), THC acid (THCA), cannabidiol (CBD)		psychoactive properties
				(5mm 10mm ' 2.1mm guard col.	ammonium formate	CBD acid (CBDA), cannabigerol (CBG), CBG acid (CBGA), cannabinol (CBN), D8-tetrahydro cannabinol(8- THC)		
63	Origanum majorana	Lamiaceae [79]	dried aerial part	250mm'4.6mm, 4mm Hypersil ODS C18 column	A.Acetonitrile	trans-2 hydroxy cinnamic acid	Amentoflavone, apigenin, quercetin	used as fungicides and insecticides
			budding to flower stage		B.water with 0.2% sulphuric acid	rosmarinic acid, vanillic acid, chlorogenic acid, gallic acid, cinnamic acid	Luteolin, coumarin, rutin	strong antioxidant activity, oil as antimicrobial agent
64	Microula sikkimensis	microula benth family [80]	dried seeds	Eclipse XDB C8 col. (150mm '4.6mm, 5mm)	A. 50% of acetonitrile	fatty acids		imp in treatment for cardiovascular and hepatic disease
	rare wild oil plant				B. 50% of acetonitrile containing 20mM/L	linolenic acid		
					ammonium formate buffer (pH 3.7)	linolic acid		
					C. mixture solution of acetonitrile and DMF	saturated and unsatutated acid		

					(acetonitrile/ DMF, 100:2 v/v)			
					(acetonitrile/ DMF, 100:30 v/v)			
65	Rheum emodi	Polygonaceae [81]	rhizomes	A Purospher- star RP- 18e colu.	1.ACN-methanol (95:5 v/v)	Anthraquinone derivatives	1 to 3 6 month TC plant	antifungal, antimicrobial, cytotoxic, antioxidant activities
			tissue culture plant use	4.6mm i.d. ′250 mm , 5mm	2. water- acetic acid (99.9-0.1 v/v)	 emodin glycoside chrysophanol glycoside emodin chrysophanol physcion 	9 month TC plant	
66	Cordia americana	Boraginaceae [82]	leaves	RP-C18 (5mm'100 mm:5mm)	A.water- acetonitrile: formic acid (90:10:0.1)			anti- inflammatory, wound healing activities
					B.Acetonitrile- formic acid (0.1%)			
67	Allium sativum	Liliaceae [83]	root, shoot, bulbs, leaves	C18 Nucleosil 100 ODS (5mm), analytical col.4.6mm ' 150mm	methanol- water (50:50 v/v)	allicin		anti diabetic activity IN VITRO antimicrobial, anto- thrombotic, anticancer, antioxidant
	green garlic plant (immature)			C18 guard col.with 20ml loop.				IN VIVO cardiovascular disorders, arteriosclerosis
68	Rheum emodi	Polygonaceae [83]	rhizomes	A Purospher- star RP- 18e colu.	1.ACN-methanol (95:5 v/v)	Anthraquinone derivatives	l to 3 6 month TC plant	antifungal, antimicrobial, cytotoxic, antioxidant activities
			tissue culture plant use	4.6mm i.d. '250 mm , 5mm	2. water- acetic acid (99.9-0.1 v/v)	 emodin glycoside chrysophanol glycoside emodin chrysophanol physcion 	9 month TC plant	
69	Aristolochia species	Aristolochiales [84]		X Terra MS C18 (150 mm' 2.1 mm, I.D.5mm	0.2% formic acid water and acetonitrile	Aristolochic acids (Aas)		anti inflammatory agents for arthritis, gout, rheumatism and dieresis
	1. Radix aristolochia					Aristoloctams(Als)		
	2. Caulis aristolochia anshurinensis							
	3.Fructus aristolochia							
70	Banisteriopsis caapi.	Malpighiaceae [85]	fresh leaves, stem	Gemini C18 110A° col.	for catechin analysis 1. water 2. acetonitrile	Harmine Harmaline tetrahydro harmine		responsible for mono- aminooxidase (Mao)A inhibitor

					for alkaloid analysis			
			large branch	Phenomax, 150mm '4.6mm I.D.5mm	1.acetonitrile containing 0.1% acetic acid	proanthocynidines like epicatechin		procynidine produce antioxidant effect
					2. 50mM ammonium acetate (pH 4.2)			
71	C. annuum L.	Solanaceae [86]	Ripe paprika	C18 Phenomenex column (Torrance, CA, USA) Gemini series (250 ×4.6 mm	A .(0.03 M phosphoric acid in water) and		Quercetin Luteolin	High antioxidant and anticancer activities
				i.d., 5 lm particle size)	B. (MeOH)		Kaempferol	
72	Eucommia ulmoides Oliv.	Eucommiaceae [87]	Dried leaves	reversed phase SunFire™ C18 (250 mm_4.6 mm i.d., 5 lm, Milford, MA, USA) column.	A (0.4% acetic acid in water) and B (acetonitrile),	 geniposidic acid; compound 2, caffeic acid; compound 3; chlorogenic acid; compound 4, ferulic acid; compound quercetin-3-O- sambubioside; compound 6, rutin; compound 7, isoquercitrin. 		antioxidant activity (Cho et al., 2003; Yen & Hsieh, 1998), glycation inhibitory activity (Kim, Moon, Lee, & Choi, 2004) and anti- obesity activity
73	Artichoke (Cynara scolymus L.)	Asteraceae 88]	Fresh artichoke samples (hearts)	Agilent Zorbax C18 column (4.6 _ 150 mm, 1.8 lm)	A. Acidified water (0.5% acetic acid, v/v) and B. acetonitrile	3 hydroxybenzoic acids, 17 hydroxycinnamic acids, 4 lignans, 7 flavones, 2 flavonols, and 1 phenol derivative		antioxidative, anti- carcinogenic, antigenotoxic, cholesterol- lowering, hepato- protective, bileexpelling, diuretic, and anti- inflammatory, as well as antifumgal, anti-HIV, and antibacterial
74	sarang semut (Myrmecodia pendan).	Rubiaceae [89]	powder	Luna 5U-C18 (2) 100A column (250 mm ×4.5 mm, 5 m) plus Jasco, quaternary gradient pump (pu- 2089) plus Jasco	A. deionized water and 1% acetic acid B. methanol (HPLC grade) and 1% acetic acid		kaempferol, luteoline, rutine, quercetine and apigenin)	antioxidant activities (Tian et al., 2009), metal chelation (Heim et al., 2002; Seyoum et al., 2006) and anti- proliferative, anti- carcinogenic, antibacterial, anti- inflammatory, antialergic, and antiviral effects
75	Convolvulus pluricaulis Shankhpushpi	Convolvulaceae [90]	leaves	Phenomenex C18 column (250 mm × 4.6 mm, 5 µm) (California, USA)	a isocratic mixture of methanol and water containing 0.1% v/v formic acid in the ration of 30: 70.	scopoletin		to treat chronic bronchitis and asthma.
76	<i>Glycyrrhiza</i> glabra Linn.	Fabaceae [91]	roots	C-18 reverse phase column (250 x 4.6 mm internal diameter, particle size 5 µm, Luna 5 µm C-18),	methanol: water (70:30 v/v)	important metals like Ca, K, Fe and Mg		Antimicrobial activity
77	water watercress (Nasturtium officinale–	Brassicaceae [92]	Dried material	RP-C18 column (4.6 mm × 250 mm) packed with 5-μm diameter particles	methanol- acetonitrile-water (40:15:45, v/v/v) containing 1.0% of acetic acid	Rutin, chlorogenic, and caffeic acids		Antioxidant activity

78	rose hip (Rosa L.) Rosa canina, Rosa dumalis, Rosa gallica, Rosa dumalis subsp.boissieri and Rosa hirtissima	Rosaceae [93]	Fruits	C18 (250 × 4.6 mm I.D.)	(A) water/acetic acid (98:2) and (B) water/ acetonitrile/acetic acid(78:20:2).	gallic acid, 4-hydroxy benzoic acid, caftaric acid, 2,5- dihidroxy benzoic acid, chlorogenic acid, t-caffeic acid, p-coumaric acid and ferrulic acid	methyl gallat, (þ)-catechin and (_)-epicatechin	Strong antioxidant activities
79	Emblica officinalis	Phyllanthaceae [94]	fruit	A reversed-phase column, Zorbax SB RP C-18 (250mm_4.6mm_5 mm pore size),	0.1% orthophosphoric acid in water (v=v) and acetonitrile	vitamin C (ascorbic acid), phenolic acids (gallic acid and ellagic acid), hydroxycinnamic acid (chlorogenic acid)	myricetin, quercetin, and kaempferol	Use for cancer, cardio-vascular disorders, ageing, diabetes, and Hypertension
80	Swertia chirayita S. minor, S. densifolia, S. lawii, S. corymbosa and S. angustifolia var: pulchella	Gentianaceae [95]	Powder of whole dry plant	C18e (5 mm) column (250–4.6 mm).	methanol and water (90:10)	BA, betulinic acid; OA, oleanolic acid; UA, ursolic acid		chronic fever, malaria, anaemia, bronchial asthma, liver disorders, hepatitis, gastritis, constipation, dyspepsia
81	Annona muricata	Annonaceae [96]	Dried leaf powder	a Waters Symmetry® C18 column (5 mm, 4.6×50 mm) with Waters Sentry TM universal guard column (5 mm, 4.6×20 mm)	A (50 mM sodium phosphate in 10 % methanol; pH 3.3) and B (70 % methanol)	Cinnamic acids (-) –Epicatechin gallate Coumarid acid Anthraquinones Isoferulic acid	Quercetin Luteolin	anti- spasmodoic, hypotensive
82	Schinopsis brasiliensis Engl.,	Anacardiaceae [97]	Stem bark	a Phenomenex Gemini NX C18 column (250 × 4.6 mm, 5 _m).	0.05% orthophosphoric acid: methanol	Gallic acid		uses for the treatment of diar-rhea and coughs, and can also be used as an antiseptic and analgesic
83	Ziziphus joazeiro	Rhamnaceae [98]	leaves	HPLC–DAD) a Phenomenex C18 column (4.6 mm_ 250 mm) packed with 5-Im diameter particles	A. water containing 1% formic acid and B.acetonitrile	gallic acid, caffeic acid, ellagic acid, catechin and epicatechin	quercetin, isoquercetin, quercitin, kaempferol and rutin	antifungal (Cruz et al., 2007), gastro- protective (Romão, Costa, Terra, Boriollo, & Soares, 2010) and anti-microbial properties (Silva et al., 2011).
84	Corylus maxima Mill.	Betulaceae [99]	leaves	a Zorbax SB C18 col- umn (150 mm × 3.0 mm, 3.5 _m;	0.2% (v/v) acetic acid, methanol	myricetin-3-O- rhamnoside and quercetin-3-O- rhamnoside – and two diarylheptanoids – oregonin and hirsutenone		Antioxidant activity
85	Paronychia argentea Lam.,	Caryophyllaceae [100]	Aerial part	HPLC-UV/DAD conditions and HPLC-ESI-MSn conditions an Ascentis C18column (250 mm × 4.6 mm I.D.,5 μm,	HPLC-UV/DAD conditions (A) 0.1 M HCOOH in H2O and (B) ACN		isorhamnetin-3- O-dihexoside, quercetin-3-O- glucoside, quercetin methylether-O- hexoside, quercetin, jaccosidin and isorhamnetin (1st time)	Antioxidant activity
86	Libyan herb species, viz Sage, Thymus, Rosemary, Chamomile, Artemisia	Lamiaceae [101]		C18 reversed-phase analytical column, 5 μm particle size, with dimension 250 × 4.6 mm	A.Buffer solution B.methnol	Rutin Ascorbic acid		antibacterial, anti inflammatory, antiumor, antiallergic, antiviral and antiprotozoal.

	Rheum					Emodin		
	spicijorme	Polygonaceae	Root and	C18 column (250	A.methanol	Aloe		anti-cancer and anti-oxidant
87	Č.	[102]	rhizomes	mm× 4.6 mm; Sunfire)	B.2% acetic acid	Emodin		activities
	Rheum webbianum					Rhein		
88	Limonium brasiliense (Boiss.) Kuntze,	Plumbaginaceae [103]	rhizome	an Agilent Zorbax C-18 (250 mm × 4.6 mm) 5 _m column	A.water: concentrated phosphoric acid (100:0.2, v/v,) and B.acetonitrile: concentrated phosphoric acid (100:0.2, v/v,)	GC, gallocathechin; EGC, pigallocatechin.		Anticancer and antioxidant activity
89	H. perforatum (St. John's wort), L. angustifolia (lavender), M. sylvestris (tall mallow), M. officinalis (lemon balm), S. officinalis (sage) and R. officinalis (rosemary)	Lamiaceae [104]	leaves	LiChrospher_100, RP-18 (250_4 mm, 5 lm) column,	A (methanol), B (acetonitrile) and C (0.3% trichloroacetic acid in water)	Rosmarinic acid		Antioxidant activity
90	Phoenix dactylifera L.)	Arecaceae [105]	Date fruits	an Atlantis C18 column (150 * 4.6 mm, 5 lm particle size)	0.1% (v/v) formic acid in water (eluent A) and acetonitrile (eluent B).	Rutin, Sinapic acid, Ferulic acid, Coumaric acid, Syringic acid, Caffeic acid, Vanillic acid, Catechin, Gallic acid		Antibacterial and cytotoxic activity
91	Kumquat (<i>Citrus</i> <i>japonica</i> var. margarita)	Rutaceae [106]	fruit	RP-C18 column (250 mm _ 4.6 mm, 5 lm,	A. deionized water B. acetonitrile		C-glycosides 30,50-di-C-b -glucopyrano sylphloretin (DGPP), acacetin 8-C- neohesperidoside (margaritene), acacetin 6-C- neohesperidoside (isomargaritene), apigenin 8-C- neohesperidoside, and Oglycosides, such as acacetin 7-O- neohesperidoside (fortunellin), isosakuranetin 7-O- neohesperidoside (poncirin) and apigenin 7-O- neohesperidoside (rhoifolin).	Antioxidant activity
92	Raphanus sativus L. var. caudatus Alef	Brassicaceae [107]		Reverse Phase-C18 column (5 lm particle size, 250 × 4.6 mm)	isocratic 5% THF-95% water	Sulforaphene Sulforaphane		Anticancer activity
93	A. barbadensis	Asphodelaceae		An Optimapak C18column (250 × 4.6 mm, 5 μm, RStech, Seoul, Korea)	A. 0.1% phosphoric acid solution andB. 100% ace-tonitrile	3: aloin.		sorethroats and diarrhea
	Catechu	Leguminosae		As above		1: (+)-catechin, 2: (-)-epicatechin,		
	Uncaria gambir	Rubiaceae		As above		1: (+)-catechin, 2: (–)-epicatechin,		

94	Salvia cadmica	Lamiaceae [109]		Eclipse XDB C-18 reversed-phase column (250 mm × 4.6 mm length, 5 _m particle size	methanol	 (1. Gallic acid, 2.Protocatechuic acid, 2.Protocatechuic acid, 2.Protocatechin, 4. p-Hydroxybenzoic acid, 5. Chlorogenic acid, 6. Caffeic acid, 7. (-)-Epicatechin, 8. Syringic acid, 9. Vanillin, 10. p-Coumaric acid, 12. Sinapinic acid, 13. Benzoic acid, 14. o-Coumaric acid, 15. Rutin, 16. Hesperidin, 17.Rosmarinic acid, 16. Herioticyol, 19. trans-Cinnamic acid, 20. Quercetin, 21. Luteolin, 22. Kaempferol, 23. Apigenin 		
95	Rheum emodi	Polygonaceae [102]		a C18 column (250 mm x 4.6 mm; Sunfire)	A. methanol and B. 2% acetic acid	Aloe-emodin, emodin and rhein		antiviral, antimicrobial and hepato- protective activities
96	Zanthoxylum canthopodium	Rutaceae [110]	leaves	AcclaimTM120 C 18 column (5 µm particle size, 250 x 4.6 mm)	acetonitrile and 1% aq. the acetic acid	ascorbic acid, free phenolic acids such as gallic acid, methyl gallate, caffeic acid, syringic acid, ferulic acid, para (p)-coumaric acid, sinapic acid	(catechin, rutin, quercetin, myricetin, apigenin and kaempferol),	Antioxidant activity
97	Ornithogalum species Ornithogalum virens, Ornithogalum thyrsoides, Ornithogalum dubium,	Asparagaceae [111]	bulb	Acclaim TM 120 C18 (25 cm x 4.6 mm, 5 μm)	1% aq. acetic acid (Solvent A) and acetonitrile (Solvent B),	gallic acid, caffeic acid, p-coumaric acid, syringic acid, sinapic acid, ferulic acid,	catechin, rutin, apigenin, quercetin, myricetin, and kaempherol	useful in treatments of stomach upsets like gastric ulcers, duodenal ulcers, acidity, etc. showed anticancer, antimicrobial, cytotoxic and antioxidant properties
98	Salvia L. species namely S. brachyantha (Bordz.) Pobed, S. aethiopis L., and S. microstegia Boiss. and Bal.	Lamiaceae [112]	Plant powder	C18 reversed-phase Inertsil ODS-4 (150 mm_4.6 mm, 3_m, GL Sciences, Tokyo, Japan) analytical column	A. water, 5 mM am- monium formate and 0.1% formic acid B. methanol, 5 mM ammonium formate, and 0.1% formic acid	apigenin, luteolin, p-coumaric acid, and chlorogenic acid.	quercetin, myricetin, and kaempherol	anticancer, antimicrobial, antioxidant properties
99	Coffea arabica	Rubiaceae [113]	leaves	HPLC-UV C18, reverse-phase (5 μ), Gemini column (250 × 4 mm I.D.; Phenomenex,	A. 2 % acetic acid in water B. acetonitrile	Isomangiferin . Mangiferin		health- promoting phenolic compounds.
100	Zanthoxylum naranjillo and Z. tingoassuiba	Rutaceae [114]	Leaves and stems	a Shimadzu Shim- pack CLC-Phenyl (particle diameter 5 µm, 250×4.60mm) column equipped with a pre-column and on a Phenomenex Onyx monolithic C18 (100×4.60mm) column equipped with a pre-column	A. methanol/ water (þ0.2%formic acid) B. 5 to 100% methanol	sesamin		anti- inflammatory, analgesic, and antimalarial action
101	Equisetum arvense L.,	Equisetaceae [115]	Strile stem	Kintex 5u RP C18 ig, 4.6 mm internal diameter × 250 mm	(A) 0.05% formic acid (HCOOH) and (B) 0.05% formic acid-acetonitrile (CH3CN),(50:50 v/v)	Synapin acid, caffeic acid, gallic acid, vanillic acid, ferulic acid, syringic acid, p-coumaric acid	Epicatechin, catechi n,quercetin,rutin,na ringenin,myricetin, luetolin	anemia, inflammation, diabetes, ulcers, cancer, convulsions, anxiety and depressive disorders
102	Dipsacus sativus (Linn.) Honck.	Dipsacus	Dried leaves	a Waters column C18 (250 mm, 4.6 mm, 5 µm)	methanol and acetic acid in water 15:85 (v/v)	Isovitexin, Saponarin		treatment of cardio-vascular disease

103	Salvia fruticosa Mill. [117]	Plant powder	a reverse phase NOVA-PAK C18 column at ambient temperature (20°C).	methanol and phosphate buffer (43 : 57)		luteolin and rutin,	antioxidant and anti- inflammatory activities
-----	---------------------------------	--------------	---	---	--	---------------------	--

4. References

1. Abu-Reidah, I.M., Arráez-Román, D., Segura-Carrewtero, A. and Fernández-Gutiérrez, A., 2013. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC–DAD-ESI-QTOF-MS. Food chemistry, 141(3), pp.2269-2277.

2. Agrawal, A.A., 1999. Induced plant defense: evolution of induction and adaptive phenotypic plasticity. Inducible plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. American Phytopathological Society Press, St. Paul, MN, pp.251-268.

3. Ahuja, S. and Dong, M. eds., 2005. Handbook of pharmaceutical analysis by HPLC (Vol. 6). Elsevier.

4. Ara, N. and Nur, H., 2009. In vitro antioxidant activity of methanolic leaves and flowers extracts of Lippia alba. Res J Med Sci 4: 107-110.

5. Arimboor, R., Kumar, K.S. and Arumughan, C., 2008. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophae rhamnoides) using RP-HPLC with DAD. Journal of Pharmaceutical and Biomedical Analysis, 47(1), pp.31-38.

6. Arzanlou, M. and Bohlooli, S., 2010. Introducing of green garlic plant as a new source of allicin. Food chemistry, 120(1), pp.179-183.

7. Aydin, S., Geckil, H., Zengin, F., Ozercan, H.I., Karatas, F., Aydin, S., Turgut-Balik, D., Ozkan, Y., Dagli, F. and Celik, V., 2006. Ghrelin in plants: What is the function of an appetite hormone in plants?. peptides, 27(7), pp.1597-1602.

8. Bae, H., Jayaprakasha, G.K., Jifon, J. and Patil, B.S., 2012. Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers. Food Chemistry, 130(3), pp.751-758.

9. Bansal, V., Sharma, A., Ghanshyam, C. and Singla, M.L., 2015. Rapid HPLC Method for Determination of Vitamin C, Phenolic Acids, Hydroxycinnamic Acid, and Flavonoids in Seasonal Samples of Emblica officinalis Juice. Journal of Liquid Chromatography & Related Technologies, 38(5), pp.619-624.

10. Baptista, J.A., da P Tavares, J.F. and Carvalho, R.C., 1998. Comparison of catechins and aromas among different green teas using HPLC/SPME-GC. Food Research International, 31(10), pp.729-736.

11. Barbosa Filho, V.M., Waczuk, E.P., Kamdem, J.P., Abolaji, A.O., Lacerda, S.R., da Costa, J.G.M., de Menezes, I.R.A., Boligon, A.A., Athayde, M.L., da Rocha, J.B.T. and Posser, T., 2014. Phytochemical constituents, antioxidant activity, cytotoxicity and osmotic fragility effects of Caju (Anacardium microcarpum). Industrial Crops and Products, 55, pp.280-288.

12. Bhattacharya, S., Maity, S., Pramanick, D., Hazra, A.K. and Choudhury, M., 2016. HPLC OF PHENOLIC COM-POUNDS, ANTIOXIDANT AND ANTIMICROBIAL ACTIVITY OF BULBS FROM THREE ORNITHOGALUM SPECIES AVAILABLE IN INDIA. International Journal of Pharmacy and Pharmaceutical Sciences, 8(7).

13. Blainski, A., Antonelli-Ushirobira, T.M., Godoy, G., Leite-Mello, E.V. and Mello, J.C., 2016. Pharmacognostic evaluation, and development and validation of a HPLC-DAD technique for gallocatechin and epigallocatechin in rhizomes from Limonium brasiliense. Revista Brasileira de Farmacognosia.

14. Boligon, A.A. and Athayde, M.L., 2014. Importance of HPLC in analysis of plants extracts. Austin Chromatogr, 1(3), p.2.

15. Boligon, A.A., Janovik, V., Boligon, A.A., Pivetta, C.R., Pereira, R.P., Rocha, J.B.T.D. and Athayde, M.L., 2013.

HPLC analysis of polyphenolic compounds and antioxidant activity in Nasturtium officinale. International Journal of Food Properties, 16(1), pp.61-69.

16. Boukhary, R., Raafat, K., Ghoneim, A.I., Aboul-Ela, M. and El-Lakany, A., 2016. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents. Evidence-Based Complementary and Alternative Medicine, 2016.

17. Brenes, M., Rejano, L., Garcia, P., Sanchez, A.H. and Garrido, A., 1995. Biochemical changes in phenolic compounds during Spanish-style green olive processing. Journal of Agricultural and Food Chemistry, 43(10), pp.2702-2706.

18. Brito, S.M., Coutinho, H.D., Talvani, A., Coronel, C., Barbosa, A.G., Vega, C., Figueredo, F.G., Tintino, S.R., Lima, L.F., Boligon, A.A. and Athayde, M.L., 2015. Analysis of bioactivities and chemical composition of Ziziphus joazeiro Mart. using HPLC–DAD. Food chemistry, 186, pp.185-191.

19. Bronze, M.R. and Boas, L.V., 1998. Characterisation of brandies and wood extracts by capillary electrophoresis. Analusis, 26(1), pp.40-47.

20. Burns, J., Yokota, T., Ashihara, H., Lean, M.E. and Crozier, A., 2002. Plant foods and herbal sources of resveratrol. Journal of agricultural and food chemistry, 50(11), pp.3337-3340.

21. Cao, Y. and Suo, Y., 2010. Extraction of Microula sikkimensis seed oil and simultaneous analysis of saturated and unsaturated fatty acids by fluorescence detection with reversed-phase HPLC. Journal of food composition and analysis, 23(1), pp.100-106.

22. Carnat, A.P., Carnat, A., Fraisse, D. and Lamaison, J.L., 1998. The aromatic and polyphenolic composition of lemon balm (Melissa officinalis L. subsp. officinalis) tea. Pharmaceutica Acta Helvetiae, 72(5), pp.301-305.

23. Chen, J., Liu, X., Xu, X., Lee, F.S.C. and Wang, X., 2007. Rapid determination of total solanesol in tobacco leaf by ultrasound-assisted extraction with RP-HPLC and ESI-TOF/MS. Journal of pharmaceutical and biomedical analysis, 43(3), pp.879-885.

24. Chopra, G.P.K.P., Saraf, B.D. and INAM F, D.S., 2013. Antimicrobial and antioxidant activities of methanol extract roots of Glycyrrhiza glabra and HPLC analysis. Int J Pharm Pharm Sci, 5(Suppl 2), pp.157-60.

25. Cometa, M.F., Parisi, L., Palmery, M., Meneguz, A. and Tomassini, L., 2009. In vitro relaxant and spasmolytic effects of constituents from Viburnum prunifolium and HPLC quantification of the bioactive isolated iridoids. Journal of ethnopharmacology, 123(2), pp.201-207.

26. Dai, X., Huang, Q., Zhou, B., Gong, Z., Liu, Z. and Shi, S., 2013. Preparative isolation and purification of seven main antioxidants from Eucommia ulmoides Oliv.(Du-zhong) leaves using HSCCC guided by DPPH-HPLC experiment. Food chemistry, 139(1), pp.563-570.

27. Davey, M.W., Stals, E., Ngoh-Newilah, G., Tomekpe, K., Lusty, C., Markham, R., Swennen, R. and Keulemans, J., 2007. Sampling strategies and variability in fruit pulp micronutrient contents of West and Central African bananas and plantains (Musa species). Journal of agricultural and food chemistry, 55(7), pp.2633-2644.

28. De Backer, B., Debrus, B., Lebrun, P., Theunis, L., Dubois, N., Decock, L., Verstraete, A., Hubert, P. and Charlier, C., 2009. Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material. Journal of Chromatography B, 877(32), pp.4115-4124.

29. De Luca, V. and St Pierre, B., 2000. The cell and developmental biology of alkaloid biosynthesis. Trends in plant science, 5(4), pp.168-173.

30. Demir, N., Yildiz, O., Alpaslan, M. and Hayaloglu, A.A., 2014. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT-Food Science and Technology, 57(1), pp.126-133.

31. El-Ashaal, H.A., Ghanem, S.A., Melek, F.R., Kohail, M.A. and Hilal, S.H., 1999. Alkaloid production from regener-

ated Solanum plants. Fitoterapia, 70(4), pp.407-411.

32. Elzaawely, A.A., Xuan, T.D. and Tawata, S., 2007. Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) BL Burtt. & RM Sm. and their antioxidant activity. Food Chemistry, 103(2), pp.486-494.

33. Engida, A.M., Kasim, N.S., Tsigie, Y.A., Ismadji, S., Huynh, L.H. and Ju, Y.H., 2013. Extraction, identification and quantitative HPLC analysis of flavonoids from sarang semut (Myrmecodia pendan). Industrial Crops and Products, 41, pp.392-396.

34. Felipe, D.F., Dias Filho, B.P., Nakamura, C.V., Franco, S.L. and Cortez, D.A.G., 2006. Analysis of neolignans compounds of Piper regnellii (Miq.) C. DC. var. pallescens (C. DC.) Yunck by HPLC. Journal of pharmaceutical and biomedical analysis, 41(4), pp.1371-1375.

35. Fernandes, F.H., Batista, R.S.D.A., Medeiros, F.D.D., Santos, F.S. and Medeiros, A.C., 2015. Development of a rapid and simple HPLC-UV method for determination of gallic acid in Schinopsis brasiliensis. Revista Brasileira de Farmacognosia, 25(3), pp.208-211.

36. Figueirinha, A., Paranhos, A., Pérez-Alonso, J.J., Santos-Buelga, C. and Batista, M.T., 2008. Cymbopogon citratus leaves: Characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chemistry, 110(3), pp.718-728.

37. Geller, F., Schmidt, C., Göttert, M., Fronza, M., Schattel, V., Heinzmann, B., Werz, O., Flores, E.M.M., Merfort, I. and Laufer, S., 2010. Identification of rosmarinic acid as the major active constituent in Cordia americana. Journal of ethnopharmacology, 128(3), pp.561-566.

38. George, V.C., Kumar, D.N., Suresh, P.K. and Kumar, R.A., 2015. Antioxidant, DNA protective efficacy and HPLC analysis of Annona muricata (soursop) extracts. Journal of food science and technology, 52(4), pp.2328-2335.

39. Grayer, R.J. and Harborne, J.B., 1994. A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry, 37(1), pp.19-42.

40. Grevenstuk, T., van der Hooft, J.J., Vervoort, J., de Waard, P. and Romano, A., 2009. Iridoid and caffeoyl phenylethanoid glycosides of the endangered carnivorous plant Pinguicula lusitanica L.(Lentibulariaceae). Biochemical Systematics and Ecology, 37(4), pp.285-289.

41. Gross, G.G., 1992. Enzymes in the biosynthesis of hydrolyzable tannins. InPlant polyphenols (pp. 43-60). Springer US.

42. Habib, H.I.I., Omar, S.K. and Mohamed, H.S., 2016. Estimation of Rutin and Ascorbic Acid in Some Libyan Herbal Plants by RP-HPLC. Medicinal & Aromatic Plants, pp.1-4.

43. Han, J., Ye, M., Guo, H., Yang, M., Wang, B.R. and Guo, D.A., 2007. Analysis of multiple constituents in a Chinese herbal preparation Shuang-Huang-Lian oral liquid by HPLC-DAD-ESI-MS n. Journal of pharmaceutical and biomedical analysis, 44(2), pp.430-438.

44. Harborne, J.B. and Williams, C.A., 2000. Advances in flavonoid research since 1992. Phytochemistry, 55(6), pp.481-504.

45. Harborne, J.B., 1982. Introduction to ecological biochemistry (No. Ed. 2). Academic Press, New York.

46. He, Z. and Xia, W., 2007. Analysis of phenolic compounds in Chinese olive (Canarium album L.) fruit by RPHPLC–DAD–ESI–MS. Food chemistry, 105(3), pp.1307-1311.

47. Henrique, C.Y., Bertanha, C.S., Alvarenga, T.A., Silva, M.L., Cunha, W.R., Januário, A.H. and Pauletti, P.M., 2016. RP-HPLC method for estimation of sesamin in two Zanthoxylum species. Journal of Liquid Chromatography & Related Technologies, 39(2), pp.65-69.

48. Irchhaiya, R., Kumar, A., Yadav, A., Gupta, N., Kumar, S., Gupta, N., Kumar, S., Yadav, V., Prakash, A. and Gurjar, H., 2015. Metabolites in plants and its classification. World Journal of Pharmacy and Pharmaceutical Sciences, 4(1), pp.287-305.

49. Janovik, V., Boligon, A.A. and Athayde, M.L., 2012. Antioxidant activities and HPLC/DAD analysis of phenolics and carotenoids from the barks of Cariniana domestica (Mart.) Miers. Research Journal of Phytochemistry,6(4), pp.105-112.

50. Jastrebova, J., Witthöft, C., Grahn, A., Svensson, U. and Jägerstad, M., 2003. HPLC determination of folates in raw and processed beetroots. Food Chemistry, 80(4), pp.579-588.

51. Jeffery, E.H., Brown, A.F., Kurilich, A.C., Keck, A.S., Matusheski, N., Klein, B.P. and Juvik, J.A., 2003. Variation in content of bioactive components in broccoli. Journal of food composition and analysis, 16(3), pp.323-330.

52. Kchaou, W., Abbès, F., Mansour, R.B., Blecker, C., Attia, H. and Besbes, S., 2016. Phenolic profile, antibacterial and cytotoxic properties of second grade date extract from Tunisian cultivars (Phoenix dactylifera L.). Food chemistry, 194, pp.1048-1055.

53. Khallouki, F., Haubner, R., Hull, W.E., Erben, G., Spiegelhalder, B., Bartsch, H. and Owen, R.W., 2007. Isolation, purification and identification of ellagic acid derivatives, catechins, and procyanidins from the root bark of Anisophyllea dichostyla R. Br. Food and Chemical Toxicology, 45(3), pp.472-485.

54. Khoddami, A., Wilkes, M.A. and Roberts, T.H., 2013. Techniques for analysis of plant phenolic compounds. Molecules, 18(2), pp.2328-2375.

55. Khokhar, S. and Magnusdottir, S.G.M., 2002. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. Journal of Agricultural and Food Chemistry, 50(3), pp.565-570.

56. Kim, N., Park, K.R., Park, I.S. and Park, Y.H., 2006. Application of novel HPLC method to the analysis of regional and seasonal variation of the active compounds in Paeonia lactiflora. Food chemistry, 96(3), pp.496-502.

57. Kocak, M.S., Sarikurkcu, C., Cengiz, M., Kocak, S., Uren, M.C. and Tepe, B., 2016. Salvia cadmica: Phenolic composition and biological activity. Industrial Crops and Products, 85, pp.204-212.

58. Koes, R.E., Quattrocchio, F. and Mol, J.N., 1994. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays, 16(2), pp.123-132.

59. Kshirsagar, P.R., Pai, S.R., Nimbalkar, M.S. and Gaikwad, N.B., 2015. Quantitative determination of three pentacyclic triterpenes from five Swertia L. species endemic to Western Ghats, India, using RP-HPLC analysis. Natural product research, 29(19), pp.1783-1788.

60. Kvasničková, L., Glatz, Z., Štěrbová, H., Kahle, V., Slanina, J. and Musil, P., 2001. Application of capillary electrochromatography using macroporous polyacrylamide columns for the analysis of lignans from seeds of Schisandra chinensis. Journal of Chromatography A, 916(1), pp.265-271.

61. Larson, R.A., 1988. The antioxidants of higher plants. Phytochemistry, 27(4), pp.969-978.

62. Le Tutour, B. and Guedon, D., 1992. Antioxidative activities of Olea europaea leaves and related phenolic compounds. Phytochemistry, 31(4), pp.1173-1178.

63. Lee, J.H., Kang, N.S., Shin, S.O., Shin, S.H., Lim, S.G., Suh, D.Y., Baek, I.Y., Park, K.Y. and Ha, T.J., 2009. Characterisation of anthocyanins in the black soybean (Glycine max L.) by HPLC-DAD-ESI/MS analysis. Food Chemistry, 112(1), pp.226-231.

64. Lou, S.N., Lai, Y.C., Hsu, Y.S. and Ho, C.T., 2016. Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. Food chemistry, 197, pp.1-6.

65. Lu, Y.H., Liu, Z.Y., Wang, Z.T. and Wei, D.Z., 2006. Quality evaluation of Platycladus orientalis (L.) Franco through simultaneous determination of four bioactive flavonoids by high-performance liquid chromatography. Journal of pharmaceutical and biomedical analysis, 41(4), pp.1186-1190.

66. Macheix, J.J. and Fleuriet, A., 1990. Fruit phenolics. CRC press. Boca Raton FL USA. 106-107.

67. Malik, S., Sharma, N., Sharma, U.K., Singh, N.P., Bhushan, S., Sharma, M., Sinha, A.K. and Ahuja, P.S., 2010. Qualitative and quantitative analysis of anthraquinone derivatives in rhizomes of tissue culture-raised Rheum emodi Wall. plants. Journal of plant physiology, 167(9), pp.749-756.

68. Martínez-Valverde, I., Periago, M.J., Provan, G. and Chesson, A., 2002. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82(3), pp.323-330.

69. Masa, A. and Vilanova, M., 2008. Flavonoid and aromatic characterisation of cv. Albarín blanco (Vitis vinifera L.). Food chemistry, 107(1), pp.273-281.

70. Mauricio, R., 1998. Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. The American Naturalist, 151(1), pp.20-28

71. Memelink, J., 2005. The use of genetics to dissect plant secondary pathways. Current opinion in plant biology, 8(3), pp.230-235.

72. Merken, H.M. and Beecher, G.R., 2000. Measurement of food flavonoids by high-performance liquid chromatography: a review. Journal of Agricultural and Food Chemistry, 48(3), pp.577-599.

73. Molyneux, R.J., Mahoney, N., Bayman, P., Wong, R.Y., Meyer, K. and Irelan, N., 2002. Eutypa dieback in grapevines: differential production of acetylenic phenol metabolites by strains of Eutypa lata. Journal of Agricultural and Food Chemistry, 50(6), pp.1393-1399.

74. Montedoro, G., Servili, M., Baldioli, M. and Miniati, E., 1992. Simple and hydrolyzable phenolic compounds in virgin olive oil. 2. Initial characterization of the hydrolyzable fraction. Journal of Agricultural and Food Chemistry, 40(9), pp.1577-1580.

75. Nicolai, M., Pereira, P., Vitor, R.F., Reis, C.P., Roberto, A. and Rijo, P., 2016. Antioxidant activity and rosmarinic acid content of ultrasound-assisted ethanolic extracts of medicinal plants. Measurement, 89, pp.328-332.

76. Ossipov, V., Nurmi, K., Loponen, J., Prokopiev, N., Haukioja, E. and Pihlaja, K., 1995. HPLC isolation and identification of flavonoids from white birch Betula pubescens leaves. Biochemical systematics and ecology, 23(3), pp.213-222.

77. Pallag, A., Jurca, T., Pasca, B., Sirbu, V., Honiges, A. and Costuleanu, M., 2016. Analysis of Phenolic Compounds Composition by HPLC and Assessment of Antioxidant Capacity in Equisetum arvense L. Extracts. REVISTA DE CHIMIE, 67(8), pp.1623-1627.

78. Park, G.L., Avery, S.M., Byers, J.L. and Nelson, D.B., 1983. Identification of bioflavonoids from citrus. Food technology, 37(12), pp.98-105.

79. Pellati, F. and Benvenuti, S., 2008. Determination of ephedrine alkaloids in Ephedra natural products using HPLC on a pentafluorophenylpropyl stationary phase. Journal of pharmaceutical and biomedical analysis, 48(2), pp.254-263.

80. Pellati, F., Calò, S. and Benvenuti, S., 2007. High-performance liquid chromatography analysis of polyacetylenes and polyenes in Echinacea pallida by using a monolithic reversed-phase silica column. Journal of Chromatography A, 1149(1), pp.56-65.

81. Piatczak, E., Wielanek, M. and Wysokinska, H., 2005. Liquid culture system for shoot multiplication and secoiridoid production in micropropagated plants of Centaurium erythraea Rafn. Plant science, 168(2), pp.431-437.

82. Pichersky, E. and Gang, D.R., 2000. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in plant science, 5(10), pp.439-445.

83. Pietta P and Mauri P (2001). Analysis of flavonoids in medicinal plants. Methods Enzymol 335: 26-45.

84. Pracheta, S.V., Paliwal, R. and Sharma, S., 2011. Preliminary phytochemical screening and in vitro antioxidant potential of hydro-ethanolic extract of Euphorbia neriifolia Linn. Int J Pharm Tech Res, 3(1), pp.124-132.

85. Prior, R.L., Wu, X. and Schaich, K., 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of agricultural and food chemistry, 53(10), pp.4290-4302.

86. Proestos, C. and Komaitis, M., 2008. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT-food science and technology, 41(4), pp.652-659.

87. Proestos, C., Boziaris, I.S., Nychas, G.J. and Komaitis, M., 2006. Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food Chemistry, 95(4), pp.664-671.

88. Proestos, C., Sereli, D. and Komaitis, M., 2006. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chemistry, 95(1), pp.44-52.

89. Rafat, A., Philip, K. and Muni, S., 2010. Antioxidant potential and content of phenolic compounds in ethanolic extracts of selected parts of Andrographis paniculata. Journal of Medicinal Plants Research, 4(3), pp.197-202.

90. Randhir, R., Lin, Y.T. and Shetty, K., 2004. Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pacific Journal of Clinical Nutrition, 13(3), pp.295-307.

91. Rice-Evans, C.A., Miller, N.J. and Paganga, G., 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology and medicine, 20(7), pp.933-956.

92. Riethmüller, E., Tóth, G., Alberti, Á., Végh, K., Burlini, I., Könczöl, Á., Balogh, G.T. and Kéry, Á., 2015. First characterisation of flavonoid-and diarylheptanoid-type antioxidant phenolics in Corylus maxima by HPLC-DAD-ESI-MS. Journal of pharmaceutical and biomedical analysis, 107, pp.159-167.

93. Robards, K., 2003. Strategies for the determination of bioactive phenols in plants, fruit and vegetables. Journal of chromatography A, 1000(1), pp.657-691.

94. Romani, A., Pinelli, P., Galardi, C., Sani, G., Cimato, A. and Heimler, D., 2002. Polyphenols in greenhouse and open-air-grown lettuce. Food Chemistry, 79(3), pp.337-342.

95. Sait, S., Hamri-Zeghichi, S., Boulekbache-Makhlouf, L., Madani, K., Rigou, P., Brighenti, V., Prencipe, F.P., Benvenuti, S. and Pellati, F., 2015. HPLC-UV/DAD and ESI-MS n analysis of flavonoids and antioxidant activity of an Algerian medicinal plant: Paronychia argentea Lam. Journal of pharmaceutical and biomedical analysis, 111, pp.231-240.

96. Sangthong, S. and Weerapreeyakul, N., 2016. Simultaneous quantification of sulforaphene and sulforaphane by reverse phase HPLC and their content in Raphanus sativus L. var. caudatus Alef extracts. Food chemistry, 201, pp.139-144.

97. Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K.M. and Latha, L.Y., 2011. Extraction, isolation and characterization of bioactive compounds from plants' extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1).

98. Satyawati, G.V. and Gupta, A.K., 1987. Medicinal plants of India: Indian Council of Medical Research, New Delhi.

99. Seal, T., 2016. HPLC DETERMINATION OF PHENOLIC ACIDS, FLAVONOIDS AND ASCORBIC ACID IN

FOUR DIFFERENT SOLVENT EXTRACTS OF ZANTHOXYLUM ACANTHOPODIUM, A WILD EDIBLE PLANT OF MEGHALAYA STATE OF INDIA. International Journal of Pharmacy and Pharmaceutical Sciences, 8(3), pp.103-109.

100. Sellami, I.H., Maamouri, E., Chahed, T., Wannes, W.A., Kchouk, M.E. and Marzouk, B., 2009. Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.). Industrial Crops and Products, 30(3), pp.395-402.

101. Shanthy S, Shadma A, Priyanka D and Gyanendra R 2011. Antioxidant Activity and Protective effect of Banana Peel against Oxidative Hemolysis of Human Erythrocyte at Different Stages of Ripening. Applied biochemistry and biotechnology, 164(7), pp.1192-1206

102. Strack, D., 1997. 10 Phenolic Metabolism. Plant Biochem., 387.

103. Sultana, B. and Anwar, F., 2008. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chemistry, 108(3), pp.879-884.

104. Tabin, S., Gupta, R.C., Bansal, G. and Kamili, A.N., 2016. Comparative HPLC analysis of emodin, aloe emodin and rhein in Rheum emodi of wild and in vitro raised plants. Journal of Pharmacognosy and Phytochemistry, 5(2), pp.121-130.

105. Tabin, S., Gupta, R.C., Kamili, A.N. and Bansal, G., 2016. Phytochemical Analysis of Wild and In vitro Raised Plants of Rheum Species Using HPLC. Biochemistry & Pharmacology: Open Access, pp.1-7.

106. Tabin, S., Gupta, R.C., Kamili, A.N. and Bansal, G., 2016. Phytochemical Analysis of Wild and In vitro Raised Plants of Rheum Species Using HPLC. Biochemistry & Pharmacology: Open Access, pp.1-7.

107. Tao, L., Wang, Z.T., Zhu, E.Y., Lu, Y.H. and Wei, D.Z., 2006. HPLC analysis of bioactive flavonoids from the rhizome of Alpinia officinarum. South African Journal of Botany, 72(1), pp.163-166.

108. Tibiri AT, Sawadogo RW, Ouedraogo NJT, Banzouzi J, Guissou IP and Nacoulma GO 2010. Evaluation of antioxidant activity, total phenolics and flavonoid contents of Entada Africana Guill et Perr. (Mimosaceae) organ extracts. Res J Med Sci 4: 81-87.

109. Tohma, H., Köksal, E., Kılıç, Ö., Alan, Y., Yılmaz, M.A., Gülçin, İ., Bursal, E. and Alwasel, S.H., 2016. RP-HPLC/ MS/MS Analysis of the Phenolic Compounds, Antioxidant and Antimicrobial Activities of Salvia L. Species. Antioxidants, 5(4), p.38.

110. Tong, L., Wang, Y., Xiong, J., Cui, Y. and Yi, L., 2008. Selection and fingerprints of the control substances for plant drug Eucommia ulmodies Oliver by HPLC and LC–MS. Talanta, 76(1), pp.80-84.

111. Trevisan, M.T., de Almeida, R.F., Soto, G., Virginio Filho, E.D.M., Ulrich, C.M. and Owen, R.W., 2016. Quantitation by HPLC-UV of Mangiferin and Isomangiferin in Coffee (Coffea arabica) Leaves from Brazil and Costa Rica After Solvent Extraction and Infusion. Food Analytical Methods, pp.1-7.

112. Tsao, R. and Deng, Z., 2004. Separation procedures for naturally occurring antioxidant phytochemicals. Journal of chromatography B, 812(1), pp.85-99.

113. Tsimidou, M., Papadopoulos, G. and Boskou, D., 1992. Determination of phenolic compounds in virgin olive oil by reversed-phase HPLC with emphasis on UV detection. Food Chemistry, 44(1), pp.53-60.

114. Tung, Y.T., Wu, J.H., Kuo, Y.H. and Chang, S.T., 2007. Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresource technology, 98(5), pp.1120-1123.

115. Van Etten, R.A., Jackson, P.K., Baltimore, D., Sanders, M.C., Matsudaira, P.T. and Janmey, P.A., 1994. The COOH terminus of the c-Abl tyrosine kinase contains distinct F-and G-actin binding domains with bundling activity. The Journal of cell biology, 124(3), pp.325-340.

116. Velioglu, Y.S., Mazza, G., Gao, L. and Oomah, B.D., 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of agricultural and food chemistry, 46(10), pp.4113-4117.

117. Vipul, U., Neeru, S., Amit, T.K., HM, J., Amreesh, M., Brijpal, S. and Bahadur, K.S., 2013. Standardization of HPLC method of Scopoletin in different extracts of Convolvulus pluricaulis. International Journal of Pharmaceutical Sciences and Drug Research, 5(1), pp.28-31.

118. Volkov, S.K. and Grodnitskaya, E.I., 1994. Application of high-performance liquid chromatography to the determination of vinblastine in Catharanthus roseus. Journal of Chromatography B: Biomedical Sciences and Applications, 660(2), pp.405-408.

119. Vovk, I. and Simonovska, B., 2007. Separation of pectin methylesterases and polygalacturonases on monolithic columns. Journal of Chromatography B, 849(1), pp.337-343.

120. Waksmundzka-Hajnos, M., 1998. Chromatographic separations of aromatic carboxylic acids. Journal of Chromatography B: Biomedical Sciences and Applications, 717(1), pp.93-118.

121. Wang, H., Cao, G. and Prior, R.L., 1996. Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 44(3), pp.701-705.

122. Wang, H., Provan, G.J. and Helliwell, K., 2003. Determination of hamamelitannin, catechins and gallic acid in witch hazel bark, twig and leaf by HPLC. Journal of pharmaceutical and biomedical analysis, 33(4), pp.539-544.

123. Wang, Y.H., Samoylenko, V., Tekwani, B.L., Khan, I.A., Miller, L.S., Chaurasiya, N.D., Rahman, M.M., Tripathi, L.M., Khan, S.I., Joshi, V.C. and Wigger, F.T., 2010. Composition, standardization and chemical profiling of Banisteriopsis caapi, a plant for the treatment of neurodegenerative disorders relevant to Parkinson's disease. Journal of ethnopharmacology, 128(3), pp.662-671.

124. Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M., 1999. Simultaneous determination of phenolic acids and 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one in wheat (Triticum aestivum L.) by gas chromatography–tandem mass spectrometry. Journal of chromatography A, 864(2), pp.315-321.

125. Yang, B., Feng, X., Xu, J., Lei, H. and Zhang, L., 2016. Multi-Component HPLC Analysis and Antioxidant Activity Characterization of Extracts from Dipsacus sativus (Linn.) Honck. International Journal of Food Properties, 19(5), pp.1000-1006.

126. Zhang, J., Xiao, Y., Feng, J., Wu, S.L., Xue, X., Zhang, X. and Liang, X., 2010. Selectively preparative purification of aristolochic acids and aristololactams from Aristolochia plants. Journal of pharmaceutical and biomedical analysis, 52(4), pp.446-451.

127. Zhao, Y., Kim, Y.H., Lee, W., Lee, Y.K., Kim, K.T. and Kang, J.S., 2016. A simple and simultaneous identification method for aloe, catechu and gambir by high performance liquid chromatography. Journal of pharmaceutical and biomedical analysis, 117, pp.73-78.

128. Zunin, P., Evangelisti, F., Pagano, M.A., Tiscornia, E. and Petacchi, R., 1995. Phenolic compounds in oil obtained from Olea europaea and anti-Dacus treatments. Rivista Italiana delle Sostanze Grasse, 72(2), pp.55-59.